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Three-dimensional P-, T4nvariant gauge nonlinear sigma models with fermions possess different phases where parity 
may or may not be dynamically broken. Thus, in general there is no axial anomaly (anomalous P-, T-violation) in three 
dimensions unless background gauge fields with nonvanishing field strengths at infinity axe present or when the fermions 
decouple. 

1. Recently much interest was devoted to the investigation of  dynamical breakdown o f  P-(space reflection) 
and T-(time reversal) invariance in three-dimensional (D = 3) gauge theories with massless fermions [ 1 - 3 ] .  This 
D = 3 "axial anomaly" was shown to be related to such interesting physical phenomena as fermion number frac- 
tionization [2,4] and the quantized Hall effect [4,5].  The content o f  the "anomaly"  may be represented in the 
following two equivalent forms: 

In det ( i~)  = -+i(16rr) -1 e "ux f d3x ( t r (WuG v x - i ~ W u W u Wx) + n A u F v x  ) + .. . ,  (1) 

(fJTUrA •) (x)  = 6 In Oct ( i~)/ i6 W A ( x )  = +n (87r)-1 eUVXGAx(x) + .. . .  (2) 

and, analogously, for ( f T u ~ ) ( x )  = 6 In det ( i~¢)/ i fAu(x) ,  where 

= 7 u ( 3 ,  + iA  u + iW~), W u = W 2 r A ,  Guy = ~uWv - ~vWu + i[Wu,  Wv] , t r ( rArB)  = n f A B  , 

A ,  B = 1 ..... n 2 - 1 (r A are the hermitian SU(n) generators). The P-, T-breaking terms on the RHS o f ( l )  are the 
well known (topological)  gauge invariant mass terms (TGIMT) [6] * 1 and the dots indicate omit ted P-, T-conserv- 
ing terms. 

It was stated in refs. [ 1,2] that (1), (2) are direct analogues of  the standard D = 4 ABBJ anomaly of  the axial 
current divergence in the sense that (1), (2) give rise to anomalous violation of  P-, T-symmetries in D = 3 which 
cannot be removed through renormalization. The latter statement,  however, contradicts in the abelian case the 
existence of  well defined (in the 1IN expansion) D = 3, P-, T-invariant gauge nonlinear sigma models with (mass- 
less) fermions ((GNLSM + F)3 ) including supersymmetric ones [ 8 - 1 0 ]  which arise as renormalization group 
fixed points of  general D = 3 Higgs models with fermions [ 10]. 

The aim of  the present note is, using (GNLSM + F)3 as a specific example, to clarify the status of  P-, T-break- 
down in D = 3 gauge theories with (massless) fermions. We fred: 

(i) In D = 3 P-, T-symmetries may be dynamically broken in some phases o f  the theory in the usual manner of  
spontaneous symmetry breaking - through a nonzero expectation value o f  an appropriate order parameter 
( ((~ff)3 - and get restored in other phases through (second order) phase transitions (see ( 6 a ) - ( 6 d )  below). This 

,1 Eaxfier work can be found in ref. [7]. 
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phenomenon was previously observed in ref. [9] at the instance of  dynamical generation of  TGIMT in (GNLSM + F)3. 
(ii) Eqs. (1), (2) do not contain anomalous terms for any Au, 1¢ u (in the non-abelian case the number of  fer- 

mion "flavors" should be even, see below), which approach pure gauges at (euclidean space) infinity. (These are 
precisely the boundary conditions on the euclidean functional integral over Au, Wu). Eq. (2) only holds when A u 
and/or W u are external background fields with nonvanishing Fur, Guy at infinity and when (2) is considered as 
a zero mass limit o f  the corresponding massive fermion theory (see (13) below). This is actually the case explicitly 
considered in refs. [1,2,4,5]. The reason for the noncorrectness o f ( l ) ,  (2) for general Au, W u is the use of  inter- 
mediate P-, T-breaking Pauli-Villars regularization in their computation. Instead, we insist on employing P-, T- 
and BRS symmetry preserving renormalization scheme - a variant of  the "soft mass" BPHZL scheme [ 11] (see 
(8), (9) below). 

(iii) Genuine D = 3 axial anomaly arises in the opposite limit o f  fermion decoupling (i.e. when the physical 
fermion mass becomes inf'mitely large), since the limiting effective low energy purely bosonic theory becomes 
nonrenormalizable (see (14) below). 

Of  course, the nonperturbative anomaly in det (i~') (its change into (--1)lkldet(i~) under homotopically non- 
trivial SU(n) gauge transformations of  topological charge k) [ 1 ] (remains intact * 2. However, it is harmless in our 
case since we may take an even N (number o f  "flavors"). 

2. Here we shall consider (GNLSM + F)3 possessing U(N) ("flavor") × U(n) ("color"  gauge) internal symmetry 
(n <At) within the 1IN expansion [9]. The lagrangian reads: 

= 17v~012 + ~1 i t~ (e ) f f  + ~ o ( 4 N n I a ) - l ( ~ )  2 + ;kl(4NnIa)-l(fjrA 4) 2 +Nn.~A, w 

~o*~o -Nnl~ /T  = O, ~0*rA¢= 0 ,  ~0=~p*~ = ~rA~O=~*rAt~ = 0 ,  (3) 

"t2A, W = - ( 4 e 2 p ) - l F 2 x ( A )  - ( 4ne2/-t)-I tr (G2x(W)) + gauge fixing t e r m ,  

with the following notations: 

• ,,kl~ l (e) k _ k + • kl+ kl l ¢*k~a ,  etc. (Tv~°~a=~v~a+i(Av~kl+wv)~Oa, (Tv ~)a-~ut~a ffeoAv6 elWv )Ca,  ~o*~ °=- a a • 

In (3)/1 is an arbitrary mass scale, so that all coupling constants T, k0,1, e0,1 are set dimensionless, e0,1 are the 
fermion charges in units o f e ,  , .  Landau gauge conditions are imposed on A , I4'.. Summation over repeated in- 

,, ,, - • - 2 • dices ("f lavor" ones a, b = 1 .... ,N;  color ones k, l - 1 ..... n; adjomt-SU(n;ones A, B = 1 .... , n - 1) is under- 
stood and the latter will be suppressed. In particular, for e 0 1 = 0% e0,1 = 1, k0,1 = T(GNLSM + F)3 coincides 
with the D = 3 supersymmetric GNLSM (in the Wess-Zuml~no gauge) [8]. 

(GNLSM + F)3 is invariant under P- and T-reflections: 

~o(e,T)(x) = rlp, T~o(xe, T) , ff(e,T)(x) = --ine, rTl,Z¢(Xp, T) , 

(A(P))(x)  = (Ao, - A 1 , A 2 ) ( X p )  , (A(ur))(x) = (Ao, - A I ,  -A2 ) (XT)  , (4) 

x e - - ( x O , - - x l , x 2 ) ,  X r - - ( - - x O , x l , x 2  ), I~?,TI = 1 .  

Note that fermion mass term, as well as the renormalizable polynomial ~-~0 interactions (~k)(~o*~0), (t~¢)(~0" ~) 
and their nonabelian counterparts change sign under P-, T-reflections (4). 

Construction o f  the 1IN expansion for (GNLSM + F)3 p/'oceeds in the standard manner by first rewriting (3) 
by means o f  auxiliary fields (a0 ,~ ,  o0, a are real bosonic and P0, pare complex fermionic): 

' = l i ~ ( e ) ~  + 5 ( 0  0 + *)q~ lTv~ol2--~o*(aO+~),P+(Nnl~/T)a 0 -(Nnla/~kO)O 2 - (N/l/~,l) t r (a2)  + ~ 

+ ~(PO +p)~o + ~o*(~ o + ~)~ +Nn £?A,W, (3 ' )  

,2 BRS symmetry preserving renormalization schemes guarantee only invariance under homotopically trivial gauge transforma- 
tions. 
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then integrating out if, ~05 (where ~p = N1/2~pl I + ~0±, ¢ k  = 0, a = 1, ..., n, ~Lta = 0, a = n + 1, ..., iV) in the quantum 
generating functional: 

Z[{je~)]=f~oiCl)qJ~¢l l~OLo. . .exp[i fd3x( .12 '+ ~ c~/~)l= f~oti~aO...exp~[iNSl+iS2[{/(~)]}, 
ea=~p,~ ,...,,o 

S 1 - i( 1 - n/N) Tr In A B -- i Tr In A F + f  d3x [-~O~ABtPll + (nla/T)c~ 0 - (nla/XO)O 2 - (U/X1) tr(a2) + n 22A, le],  (5) 

A F ~ i,~ (e) + o 0 + ~ ,  A B = VuTu + c~ 0 + a  + (P0 + P ) A F I ( p 0  + P) , 

and, finally, expanding S 1 (5) around its constant saddle points: ~11 = v, &0 --- m2, 60 -= - rn~  (all other fields having 
zero stationary values). Clearly, m~ and m~ are tJae corresponding dynamically generated masses of  ~0 and ~. Note 
that" 

n - I  ( ( ~ ) )  = (2Nla/ho)(Oo) = N[-(21a/Xo)m~ + O ( N - a ) ] .  

Solutions o f  the stationarity equations for S 1 yield the following phase structure (T c same as in the purely bo- 
sonic case [12]): 

(a) T >  T c, 0 < h 0 < T c (P-, T-symmetric "high temperature" phase): 

V = 0, m~ = 47r/.t(1/T c -  1/T), m~ = 0 .  (6a) 

(b) T >  T c, ~0 < 0 or T c < X 0 < 2T c ("high temperature" phase with broken P-, T-symmetries, the upper bound 
on h 0 comes from stability requirements on the large N effective potential for (~qJ)): 

V= 0, m o = 47r/l(1/T c -  l /T) ,  Irn~l = 4zrp(l /T c -  l /X0) .  (6b) 

(c) T <  T c, 0 < ~3 < Tc (P-, T-symmetric "low temperature" phase): 

IVI2=U(1/T-1/Tc)  , m~o=0 , m~ = 0 .  (6c) 

(d) T <  T c, X 0 < 0 or T c < ~0 < 2Tc ("low temperature" phase with broken P-, T-symmetry): 

IVI 2 =la(1/T-  1/Tc), me  = 0, Im¢ 1= 47r/a(l/T c - 1/~.0). (6d) 

The explicit form of  the 1IN graphical rules and the structure of  the (GNLSM + F)3 particle spectrum (con- 
taining, in particular, topologically massive Wu, A u-gauge bosons, massive composite fermions P0, P and massive 
composite "color"  scalars a in phase (b)) were derived in ref. [9]. Here we shall need only the "free" 1/N propaga- 
tors ofA u, Wu: 

(AUAV)(0)(P; e0, ~0) = (Nn) -1 i [~2(P; e0, e0) - p2e4 e2(P)]  -1 [(gUy _ pUpV/p2)~(p; e0 ' e0 ) + ie02 euZ, hphC(p)], 
(7a) 

the last term yielding dynamical TGIMT [9], 

~r(p; e, e) =- -p2/e21a + I VI 2 + (4m 2 - p2) ½ F(p2 ;  rno ) _ rno/47r + e2 [[rn¢ I/4~r - (4m~ + p2) ~_ F(p2;  me ) ] ,  (7b) 

(p) =- 2m¢ F(p2;m ~ ) = (47r)-1 sign (m¢ )f(p2/4m~ ) ,  (7 c) 

f(z) = ( - z ) - l / ~  arctg [(-z)l /2],  fo rz  < 0 ,  
(7d) 

= ~(z-1/2)ln[(l +z l /2) (1- -z l /2 ) - l ]  , f o r z > 0 ,  

(W~ W~)(0)(p; e l ,  e l )  = 8AB(AUAt')(O)(p; e l ,  e l )  . (7e) 

3. To renormalize the 1/N expansion we choose a version of  the mass-independent "soft mass" BPHZL scheme 
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[11] simultaneously suited for all phases (a)--(d) (cf. refs. [8,10]). First, all dimensional parameters entering in 
propagators and vertices are made "soft":  

V + s l l2v ,  m~,¢ ~ m~o,~(s)= sm~,qj , rh =4rr/.t(1/~ 1 - 1 / ~ ) ~ m ( s )  =srh ,  

where th appears in the ~-propagator. Secondly, one introduces an additional "sof t"  mass zp  only in the ~0- and ~- 
propagators, serving as an infrared regulator: 

(~a~o~l)(O)(p)=SabSkl[m2(s)+z21a2-p2] -1 , (~k~l)(O)(p)=fab~kl(t¢+m~k(s))/[m2(s)+z21a2-p2 ] . (8) 

Here s and z (0 ~< s, z ~< 1) are auxiliary parameters. Then one employs the standard R-operation recurrence for- 
mula (or the "forest formula") [ 13] with modified subtraction operators r 8 (r): 

1 - r  a ( r ) = ( 1 - t  0 " a ( r ) - H t ' - t  o t a(p) ~ (9) z'(p),, I~* z - t  {v),,J, 
where tx~ ...~v are the standard Taylor subtraction operators of  degree 8 around x = .,, = y = 0,{p} is the set o f  ex- 
ternal momenta  and 8(P) is the ultraviolet degree of  a 1IN graph P: 

x ext (10) 8 ( r )  = 3 -~L~o ( r )  - -  L ~ X t ( p )  -L~,W(P) - L ~ x t ( p )  - 2Leaxt(r) a lextrp- ,  

L~Xt(F) denotes number  o f  externalS-lines of  P. After implementing all subtractions one sets s = 1, z = 0. 
In fact, the "soft mass" scheme was already used in the computation of(7) .  Note the crucial difference between 

(8), (9) and the Pauli-Villars procedure. In the P-, T-symmetric phases (a), (c) where mqj = 0 the additional "sof t"  
mass z~t appears only in the denominator of  (fft~)(0)(p). Hence, P- and T-invariance are respected by our renormali- 
zation procedure. It also respects the "sof t"  P-, T-breaking in phases (b), (d). This follows directly from the form 
of  the renormalization group equations (RGE) in phases (b), (d): 

(ta~/~ta + + + - I] OlOrfi + V*OlOV*) + 2~~om ¢ O/Sm~ 2 [~'~rh (~oo ~'a) Im~ ~v(vo/ov+ 

- ~ e20/Oe2+~ofd3xfC~(x)a/Djo(x)] lnZ[( f~}]+contact terms,  (11) 
r=0,1  ¢~ - J ] 

where ~'0 = ~',(e0,1; e 0 1) = N-I~J(~ 1) + O(N-2 )  are the corresponding anomalous field dimensions. In order to ob- 
tain the RGEval id  for ~11 phases ( a ) - (d )  simultaneously, one should reexpress m e ,  rh in terms of  the initial coupling 
constants X0, ~1" These RGE have the same form (11) where the second and the third terms are replaced by: 

[3XoO/DXO +3x,0/DX1 , 3Xo = hO(1 - Xo/Tc)(1 - 2~'0o), 3M = Xl(1 - Xl/Tc)(1 - 2~'a). (12) 

Finally, one can easily verify that the Ward identities of  the (spontaneously broken in phases (c), (d)) internal 
symmetry are preserved by (9) and (8). More details will appear elsewhere. 

Thus, we conclude that (GNLSM + F)3 are well defined within the 1IN expansion in all phases (a ) - (d ) .  This 
proves our assertion (i). 

1 euvxGVh) 4. In the model (3)eq.  (2) takes the form according to (8) (*G u = 

(~'yur A @)(x) = (Nn/alr) sign (m~) f d3~p 3 exp( - ipx ) f (p2 /am 2 )*G~(p) + ... 
tzTr) 

(and, analogously, for (~Tu~b)(x)) where the dots indicate terms which become P-, T-symmetric in the limit m~ -->0. 
Using elementary properties o f  the Fourier transform of  distributions [ 14] one can easily check (after rotation to 
euclidean space) that either 

d 3 
, 0  (for any *G'(x)=O(lx l -a) ) ,  Nn (4~r) -1 sign(re,r, ) 2 m,,, ( ° ~ ° P .  exp( ipx)  IP 1-1 arctg OPl/2 rn~ )* G~ (1 o) mt~ -q) 

" " a  (2rr)J (13a) 

o r  
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Nn (4rr) -1 sign(me )2m¢, ) 2 m ~ (  d3p exp(ipx)Ip1-1 arctg(lPl/2rn~ )*G~(p) - - - - -+ sign(mg, )Nn(4rr) -1 *G~ 
a (2rr)J m4,+ 0 

(if *GU(x) " *G u 4: 0) , (13b) 
Ix I --+ 

where c~ is an arbitrary positive degree. Thus, assertion (ii) is also proved. 

5. Finally, let us consider the opposite limit Im~ I -+ oo in phases (b), (d) when m0 = 0, V= 0 (i.e. T = Tc). Ac- 
cording to (6) this is equivalent to the limit X0t0 which means by (12) infrared scaling limit. The "free" gauge 
field propagators retain their form (7a), (7e) with: 

Cj(p) = _p2/e21a + ~6(_p2)1/2 , ~ (p )  = sign(toO)" (470 -1 , 

i.e. although the fermions decouple, they leave behind explicit TGIMT with f ixed constant coefficients (cf. (7a)). 
In tile infrared scaling limit o f (3 )  also e0,1 -+ oo (cf. (1 1)) (recall that in D = 3 gauge coupling constants have posi- 
tive mass dimension). Thus, we get the following effective low energy theory: 

a sign (m~)NeUVX {~1 tr[WuGux - i]  Wu WvWx] + n~oAuFvx) + gauge fixing terms,  .12, = IV~ol 2 + a 

~o*so-Nnla/T c = 0 ,  ~P*rA~O= 0 ,  ~1 =~0 = 1/47r = fixed, (14) 

whereas by topological reasons ~1 must be quantized (~1 = I/4rr, l being integer and l = 1 in our case) [6], there is 
no restriction on ~0" In higher orders in 1IN the abelian TGIMT will induce according to (10) new ultraviolet 
divergences which were absent in (3) before the fermion decoupling and which cannot be absorbed through renor- 
malization o f  [0 since the latter is not a free parameter in (14). (~0 = 1/47r is not a fixed point of  the correspond- 
ing/3~o-fUnction, which in the leading I /N order reads [10]: 18~1 o) = - N  -183~0 {3rr 2 [1 +(8~0)2 ] }-1).  Hence (14) 
is a nonrenormalizable theory. 

Thus, we see that true axial anomaly (anomalous violation o f  P-, T-invariance) in D = 3 does actually arise only 
in the infrared limit in P-, T-nonsymmetric phases o f  classically P-, T-invariant gauge theories with fermions when 
the P-, T-breaking is due to a dynamically generated fermion mass. 

The infrared limit o f  (GNLSM + F)3 (3) in phases (b), (d) (where m~ 4: 0, rn~o = 0) may be viewed as the result 
of  (formal) high-temperature dimension al reduction [ 15 ] o fD = 4 U(N) ("flavor") X U (n) ("color"  gauge) Higgs 
models coupled to chiralD = 4 fermions. The latter theory is anomalous. Then the nonrenormalizable TGIMT in 
(14) may be considered as the D = 3 counterpart of  the D = 4 anomaly in the high-temperature limit when the 
fermions decouple. 

We would like to thank Professor R. Jackiw for useful comments during the Landau Inst i tute-Nordita Work- 
shop in Moscow, May 1984, and the members of  the Theory Department o f  the Lebedev Physical Institute for 
interesting discussions. 
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